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Abstract	
Prediction	may	be	a	central	concept	for	understanding	perceptual	and	cognitive	
processing.	Contemporary	theoretical	neuroscience	formalizes	the	role	of	
prediction	in	terms	of	probabilistic	inference.	Perception,	action,	attention	and	
learning	may	then	be	unified	as	aspects	of	predictive	processing	in	the	brain.	
This	chapter	first	explains	the	sense	in	which	predictive	processing	is	inferential	
and	representational.	Then	follows	an	exploration	of	how	the	predictive	
processing	framework	relates	to	a	series	of	considerations	in	favour	of	enactive,	
embedded,	embodied	and	extended	cognition	(4e	cognition).	The	initial	
impression	may	be	that	predictive	processing	is	too	representational	and	
inferential	to	fit	well	to	4e	cognition.	But,	in	fact,	predictive	processing	
encompasses	many	phenomena	prevalent	in	4e	approaches,	while	remaining	
both	inferential	and	representational.		
	
Introduction	
A	millennium	ago	the	great	arab	polymath	Ibn	al	Haytham	(Alhazen)	(ca.	1030;	
1989),	developed	the	view	that	“many	visible	properties	are	perceived	by	
judgment	and	inference”	(II.3.16).	He	knew	that	there	are	optical	distortions	and	
omissions	of	the	image	hitting	the	eye,	which	without	inference	would	make	
perception	as	we	know	it	impossible	(Lindberg	1976,	Hatfield	2002).	al	Haytham	
was	aware	it	is	counterintuitive	to	say	perception	depends	on	typically	
intellectual	activities	of	judgment	and	inference	and	so	remarks	that	“the	shape	
and	size	of	a	body…	and	such	like	properties	of	visible	objects	are	in	most	cases	
perceived	extremely	quickly,	and	because	of	this	speed	one	is	not	aware	of	
having	perceived	them	by	inference	and	judgment”	(II.3.26).	
	
Since	al	Haytham,	many	in	optics,	psychology,	neuroscience,	and	philosophy	
have	advocated	the	role	of	inference	in	perception,	and	have	insisted	too	that	
this	inference	is	somehow	unconscious	(for	review,	see	(Hatfield	2002)).	With	
characteristic	clarity,	Hermann	von	Helmholtz	coins	the	phrase	unconscious	
perceptual	inference	and	says	that	the	“psychical	activities”	leading	to	perception	
“are	in	general	not	conscious,	but	rather	unconscious.	In	their	outcomes	they	are	
like	inferences	insofar	as	we	from	the	observed	effect	on	our	senses	arrive	at	an	
idea	of	the	cause	of	this	effect.	This	is	so	even	though	we	always	in	fact	only	have	
direct	access	to	the	events	at	the	nerves,	that	is,	we	sense	the	effects,	never	the	
external	objects”	((Helmholtz	1867):	430).	
	
The	starting	point	for	this	inferential	view	is	the	conviction	that	perception	can	
be	explained	only	if	a	particular,	fundamental	problem	of	perception	is	solved,	
namely	how	the	brain	can	construct	our	familiar	perceptual	experience	on	the	
basis	only	of	the	imperfect	data	delivered	to	the	senses,	and	without	ever	having	
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unfettered	access	to	the	true	hidden	causes	of	that	input.	This	type	of	problem	is	
also	at	the	heart	of	massive	scientific	endeavors	in	contemporary	artificial	
intelligence	and	machine	learning.	
	
Recently,	the	notion	of	unconscious	perceptual	inference	has	been	embedded	in	
a	vast	probabilistic	theoretical	framework	covering	cognitive	science,	theoretical	
neurobiology,	and	machine	learning.	The	basic	idea	is	that	unconscious	
perceptual	inference	is	a	matter	of	Bayesian	inference,	such	that	the	brain	in	
some	manner	follows	Bayes’	rule	and	thereby	can	overcome	the	problem	of	
perception.	The	most	comprehensive,	ambitious,	and	fascinating	of	these	
probabilistic	theories	build	on	the	notion	of	prediction	error	minimization	(PEM)	
(this	notion	arose	in	machine	learning	research,	with	versions	of	it	going	back	to	
1950ties;	for	recent	philosophical	overviews,	see	(Clark	2013,	Hohwy	2013)).	
	
Several	aspects	of	unconscious	perceptual	inference	are	anathema	to	many	
versions	of	enactive,	embedded,	embodied	and	extended	(4e)	cognition.	If	
perception	is	a	matter	of	Bayesian	inference,	then	perception	seems	a	very	
passive,	intellectualist,	neurocentric	phenomenon	of	receiving	sensory	input	and	
performing	inferential	operations	on	them	in	order	to	build	internal	
representations.	This	process	is	divorced	from	action	and	active	interaction	with	
the	environment,	it	appears	insensitive	to	the	situation	in	which	the	system	is	
embedded,	it	leaves	no	foundational	role	for	the	body	in	cognitive	and	
perceptual	processes,	and	it	makes	perceptual	processes	a	matter	of	what	
happens	behind	the	sensory	veil	with	no	possibility	of	extension	to	mental	states	
beyond	the	brain	let	alone	the	body	(4e	cognition	is	now	a	vast	and	varied	area	
of	research;	the	types	of	approaches	that	stress	anti-representational	and	anti-
inferential	elements	are,	for	example,	(Varela,	Thompson	et	al.	1991,	Clark	1997,	
Noë	2004,	Gallagher	2005,	Thompson	2007,	Clark	2008,	Hutto	and	Myin	2013).	
	
The	tension	between	perceptual	inference	and	4e	cognition	matters	because	
both	are	influential	attempts	at	explaining	the	same	range	of	phenomena.	Having	
noticed	the	initial	tension	between	them,	there	are	3	main	options:	(1)	
perceptual	inference	and	4e	cognition	are	incompatible	as	foundational	accounts	
of	perception	and	cognition,	which	means	one	must	be	false	(Anderson	and	
Chemero	2013,	Barrett	2015);	this	option	appears	unattractive	because	key	
aspects	of	both	seem	believable	and	important.	The	next	two	options	are	more	
discursive:	(2)	Perceptual	inference	and	4e	cognition	should	be	considered	
compatible,	but	only	because	perceptual	inference,	rightly	understood,	is	not	a	
matter	of	neurocentric,	representationalist	inference	but	yields	just	the	kinds	of	
processes	necessary	for	4e	cognition	(Clark	2013,	Clark	2015,	Clark	2016).	(3)	
Perceptual	inference	and	4e	cognition	should	be	considered	compatible,	but	only	
because	4e	cognition,	rightly	understood,	is	nothing	but	representation	and	
inference	(Hohwy	2014).	Options	(2)	and	(3)	deflate	perceptual	inference	and	4e	
cognition,	respectively,	that	is,	they	achieve	reconciliation	by	recasting	one	of	the	
sides	of	the	debate	in	terms	of	the	other.	
	
This	chapter	aims	to	show	that	option	(3)	is	reasonable.	Perceptual	inference,	in	
the	shape	of	PEM,	is	tremendously	resourceful	and	can	therefore	encompass	
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phenomena	highlighted	in	debates	on	4e	cognition.	Reconciliation	with	
somewhat	deflated	4e	notions	is	achieved	without	compromising	PEM’s	
representationalist	and	inferentialist	essence.	This	advances	the	debate	about	4e	
cognition	because,	in	the	context	of	PEM,	inference	and	representation	are	both	
shown	to	have	several	surprising	aspects,	such	that,	perhaps,	4e	cognition	need	
not	abhor	these	notions	altogether.	
	
The	chapter	first	explains	PEM	and	lays	out	its	specific	notion	of	inference.	Then	
action	is	subsumed	under	PEMs	inferential	scheme,	and	the	role	of	
representation	in	perception	and	action	is	explained.	Finally,	select	aspects	of	4e	
cognition	are	incorporated	into	the	PEM	fold.	
	
Predictive	processing	and	inference	
On	many	approaches	to	unconscious	perceptual	inference,	the	notion	of	
inference	is	left	unspecified;	as	Helmholtz	says,	our	psychical	activities	are	“like”	
inference.	Here,	the	notion	of	inference	captures	the	idea	that	the	perceptual	and	
cognitive	systems	need	to	draw	conclusions	about	the	true	hidden	causes	of	
sensory	input	vicariously,	working	only	from	the	incomplete	information	given	
in	the	sensory	input.	
	
On	modern	approaches,	this	is	given	shape	in	terms	of	Bayesian	inference.	This	
yields	a	concrete	sense	of	‘inference’	where	Bayes’	rule	is	used	to	update	internal	
models	of	the	causes	of	the	input	in	the	light	of	new	evidence.	A	Bayesian	system	
will	arrive	at	new	probabilistically	optimal	“conclusions”	about	the	hidden	
causes	by	weighting	its	prior	expectations	about	the	causes	against	the	
likelihood	that	the	current	evidence	was	caused	by	those	causes	(there	are	useful	
text	book	sources	on	machine	learning,	such	as	(Bishop	2007)	and	philosophical	
reviews	(Rescorla	2015);	see	also	recent	treatments	of	hierarchical	Bayes	and	
volatility	such	as	(Payzan-LeNestour	and	Bossaerts	2011,	Mathys,	Lomakina	et	
al.	2014)).	
	
Consider	a	series	of	sensory	samples,	for	example	auditory	inputs	drawn	from	a	
sound	source.	The	question	for	the	perceiver	is	where	the	sound	source	is	
located	(somewhere	on	a	180°	space	in	front	of	the	perceiver).	Assume	the	
samples	are	normally	distributed	and	that	the	true	source	is	80°.	Before	any	
samples	come	in,	the	perceiver	expects	–	predicts	–	samples	to	be	distributed	
around	90°.	The	first	sample	comes	in	indicating	77°,	and	thereby	suggests	a	
prediction	error	of	13°.	Which	probabilistic	inference	should	the	perceiver	make?	
Inferring	that	the	source	is	at	77°	would	disregard	prior	knowledge	and	lead	to	a	
model	overfitted	to	noise.	Ignoring	the	prediction	error	would	prevent	
perceptual	learning	altogether.	So	the	right	weight	to	assign	to	the	prediction	
error	in	updating	the	prior	belief	of	90°	ought	to	reflect	an	optimal,	rational	
balance	between	the	prior	and	the	likelihood,	and	this	is	indeed	what	Bayes’	rule	
delivers.	So	probabilistic	inference	should	be	determined	by	Bayes’	rule.	In	other	
words,	the	learning	rate	in	Bayesian	inference	is	determined	by	how	much	is	
already	known	and	how	much	is	being	learned	by	the	current	evidence,	reflected	
in	the	likelihood.	(In	this	toy	example,	I	set	aside	the	question	how	the	perceiver	
knows	not	to	add	the	weighted	prediction	error	to	90°,	moving	towards	103°	and	
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away	from	80°;	notice	that	if	the	system	does	this,	then	prediction	error	will	tend	
to	grow	over	time).	
	
The	correct	weights	to	give	to	the	prior	and	the	prediction	error	can	be	
considered	transparently	through	the	variance	of	their	probability	distributions.	
The	more	the	variance	the	less	the	weight.	A	strong	prior	will	have	little	variance	
and	should	be	weighted	highly,	and	a	precise	input,	which	fits	well	the	expected	
values	of	the	model	in	question,	should	be	weighted	highly.	The	inverse	of	the	
variance	is	called	the	precision,	and	it	is	a	mathematically	expedient	convention	
to	operate	with	precisions	in	discussions	of	inference:	the	learning	rate	in	
Bayesian	inference	therefore	depends	on	the	precisions	of	the	priors	and	
prediction	errors.	As	will	become	apparent	later,	precisions	are	important	to	
PEM	and	its	ability	to	engage	4e	type	issues.	
	
So	far,	only	one	inferential	step	is	described.	For	subsequent	samples,	Bayes’	rule	
should	also	be	applied,	but	for	the	old	inferred	posterior	as	the	new	prior.	Since	
there	is	an	optimal	mix	of	prior	and	likelihood,	the	model	will	converge	on	the	
true	mean	(80°)	in	the	long	run.	Critically,	in	this	process,	the	average	prediction	
error	is	minimized	over	the	long	run.	Even	for	quite	noisy	samples	(imprecise	
distributions,	or	probability	density	functions),	a	Bayesian	inference	system	will	
eventually	settle	on	an	expectation	for	the	mean	that	keeps	prediction	error	low.	
This	can	be	turned	around	such	that,	subject	to	a	number	of	assumptions	about	
the	shape	of	the	probability	distributions	and	context	in	which	they	are	
considered,	a	system	that	minimizes	prediction	error	in	the	long	run	will	
approximate	Bayesian	inference.	
	
The	heart	of	PEM	is	then	the	idea	that	a	system	need	not	explicitly	know	or	
calculate	Bayes’	rule	to	approximate	Bayesian	inference.	All	the	system	needs	is	
the	ability	to	minimize	prediction	error	in	the	long	run.	This	is	the	sense	in	which	
unconscious	perceptual	inference	is	inference:	internal	models	are	refined	
through	prediction	error	minimization	such	that	Bayesian	inference	is	
approximated.	The	notion	of	inference	is	therefore	nothing	to	do	with	
propositional	logic	or	deduction,	nor	with	overly	intellectual	application	of	
theorems	of	probability	theory.	
	
It	would	be	misguided	to	withdraw	the	label	‘inference’	from	unconscious	
perceptual	inference,	or	from	PEM,	just	because	it	is	an	approximation	to	Bayes,	
or	because	the	process	is	not	an	explicit	application	of	a	mathematical	formalism	
by	the	brain.	If	the	inferential	aspect	is	not	kept	in	focus,	then	it	would	appear	to	
be	a	coincidence,	or	somehow	an	optional	aspect	of	perceptual	and	cognitive	
processes	that	they	conform	to	what	Bayes’	rule	dictate.	Put	differently,	anyone	
who	subscribes	to	the	notion	of	predictive	processing	must	also	accept	the	
inferential	aspect.	If	it	is	thrown	out,	then	the	“prediction	error	minimization”	
part	becomes	a	meaningless,	unconstrained	notion.	
	
PEM	thus	says	that	perceivers	harbor	internal	models	that	give	rise	to	precision-
weighted	predictions	of	what	the	sensory	input	should	be,	and	that	these	
predictions	can	be	compared	to	the	actual	sensory	input.	The	ensuing	prediction	
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error	guides	the	updates	of	the	internal	model	such	that	prediction	error	in	the	
long	run	is	minimized	and	Bayesian	inference	approximated.	
	
However,	this	description	of	PEM	is	still	too	sparse.	In	any	given	situation,	a	PEM	
system	will	not	know	how	much	or	how	little	to	weight	prediction	error	even	if	it	
can	assess	the	precisions	of	the	prior	and	of	the	current	prediction	error.	In	
essence,	a	system	that	operates	with	only	those	precisions	will	be	assuming	the	
world	is	more	simple	and	persistent	than	it	really	is.	For	example,	different	
sensory	modalities	have	different	precisions	in	different	contexts,	and	without	
prior	knowledge	of	these	precisions,	the	system	can	make	no	informed	decisions	
about	how	to	weight	prediction	error.	For	example,	similarly	sized	prediction	
errors	in	the	auditory	and	visual	modalities	should	not	be	weighted	the	same,	
since	the	precisions	of	each	should	be	expected	to	be	different.	Therefore	a	PEM	
system	would	need	to	have	and	shape	expectations	about	the	precisions	as	well	
as	the	means	of	probability	distributions.	The	need	for	such	expected	precisions	is	
also	driven	by	the	occurrence	of	multiple	interacting	causes	of	sensory	input	
within	and	across	sensory	modalities.	In	the	example	of	the	location	of	the	
auditory	source,	variability	in	the	sensory	sampling	might	be	caused	by	a	new	
cause	interfering	with	the	original	sound	source	(e.g.,	a	moving	screen	
intermittently	obscures	the	location	of	the	sound).	If	the	system	does	not	have	
robust	expectations	for	the	precision	of	the	sound	source,	then	it	will	be	unable	
to	make	the	right	inferences	about	the	input	(i.e.,	is	it	one	cause	with	varying	
precisions,	or	is	it	two	interacting	causes	that	gives	rise	to	the	non-linear	
evolution	in	the	auditory	sensory	input?).	
	
A	PEM	system	must	model	expectations	of	precisions,	and	this	part	of	the	PEM	
system	itself	needs	to	be	Bayes	optimal.	Models	will	harbor	priors	for	precisions,	
they	will	predict	precisions	and	generate	precision	prediction	errors.	Moreover,	
it	will	need	to	do	this	across	all	the	hidden	causes	modeled	such	that	their	
interactions	can	be	taken	into	account.	This	calls	for	a	hierarchical	structure,	
where	the	occurrence	of	various	causes	over	many	different	time	scales	can	
impact	on	the	predictions	of	the	sensory	input	received	at	any	given	time.	For	
example,	the	interaction	of	relatively	slow	time	scale	regularities	(e.g.,	the	trains	
driving	past	your	house	two	or	three	times	an	hour)	need	to	influence	the	
predictions	of	more	fast	time	scale	regularities	(e.g.,	the	words	heard	in	a	
conversation	in	your	lounge	room),	and	vice	versa.	
	
A	PEM	system	that	operates	in	a	complex	environment,	with	levels	of	uncertainty	
that	depend	on	the	current	state	of	the	world	and	many	interacting	causes	at	
many	different	time	scales,	will	thus	build	up	a	vast	internal	model	with	many	
interacting,	hierarchically	ordered	levels,	which	all	pass	messages	to	each	other	
in	an	attempt	to	minimize	average	prediction	error	over	the	long	term.	
	
Consider	finally	what	happens	over	time	to	the	models	harboured	in	the	brain,	
on	the	basis	of	which	predictions	are	made	and	prediction	errors	minimized.	The	
parameters	of	these	models	will	be	shaped	by	the	Bayesian	inferential	process	to	
mirror	the	causes	of	the	sensory	input.	In	the	example	above,	by	minimizing	
prediction	error	over	time	for	the	location	of	the	cause	of	auditory	input,	the	
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model	will	revise	its	initial,	false	belief	that	the	location	is	at	90°,	and	come	to	
expect	it	to	be	at	its	true	position	of	80°.	Further,	by	minimizing	precision	
prediction	error,	the	model	may	be	able	to	anticipate	interacting	causes,	such	as	
a	moving	screen	intermittently	blocking	the	sound.	This	means	that,	by	
approximating	Bayesian	inference,	the	models	of	a	PEM	system	must	represent	
its	world.	
	
Here,	the	notion	of	representation	is	not	just	a	matter	of	receptor	covariance,	
where	the	states	of	neural	populations	co-vary	with	the	occurrence	of	certain	
environmental	causes.	The	hierarchical	model	is	highly	structured,	and	performs	
operations	over	the	parameters.	For	example,	there	will	be	model	selection.	In	
our	example,	the	system	might	ask	whether	there	is	another	cause	interacting	
with	the	sound	source,	or	if	the	signal	itself	is	becoming	more	noisy.	In	addition,	
there	are	convolutions	of	separate	expected	signals	generated	on	the	basis	of	the	
models;	for	example,	when	a	cat	and	a	fence	are	detected,	the	expected	sensory	
signals	from	both	hidden	causes	are	convolved	into	one	stream	by	the	brain	to	
take	the	occlusion	of	the	cat	by	the	fence	into	account.	As	will	become	clear,	the	
representational	aspects	PEM	are	critical	when	it	comes	to	incorporating	action	
too.	
	
The	representational	nature	of	a	PEM	system	is	not	optional.	The	ability	to	
minimize	prediction	error	over	time	depends	on	building	better	and	better	
representations	of	the	causes	of	its	sensory	input.	This	is	encapsulated	in	the	
very	notion	of	model	revision	in	Bayesian	inference.	(There	is	extensive	
discussion	of	what	it	takes	for	perception	to	be	representational,	for	examples	of	
relevance	to	Bayesian	inference,	see	(Ramsey	2007,	Orlandi	2013,	Orlandi	2014,	
Gładziejewski	2015,	Ramsey	2015)).	
	
So	far,	it	appears	that	predictive	processing	is	inferential	and	representational	in	
a	specific	Bayesian	sense.	Traditionally,	4e	approaches	have	rejected	both	
notions.	Next,	PEM	will	be	shown	to	have	explanatory	reach	into	4e	cognition	
too.	
	
PEM	and	action	
A	representationalist	and	inferentialist	account	of	cognition	and	perception	may	
appear	divorced	from	the	concerns	and	activities	of	a	real,	embodied	agent	
operating	in	its	environment.	Thus	enactive	and	embodied	accounts	have	de-
emphasized	classic	representationalist	understandings	of	cognition	and	
perception	and	with	it	much	semblance	to	inference	(there	are	many	versions	
and	much	discussion	of	embodiment,	see,	e.g.,	(Brooks	1991,	Noë	2004,	
Gallagher	2005,	Alsmith	and	Vignemont	2012,	Hutto	and	Myin	2013,	Orlandi	
2014)).	
	
Perhaps	the	basic	sentiment	could	be	summed	up	in	the	strong	intuition	that	
embodied	action	is	not	inference,	and	yet	the	body	and	its	actions	are	crucial	to	
gain	any	kind	of	understanding	of	perception	and	cognition.	PEM	can	however	
easily	cast	action	as	a	kind	of	inference	–	as	active	inference	(Friston,	
Samothrakis	et	al.	2012).	



Hohwy, J. (in print) The predictive processing hypothesis. (in print). In The Oxford Handbook of 
4E Cognition. Newen, A, Bruin, L., Gallagher, S. (eds.). Oxford University Press. 

	

	 7	

	
Recall	that	any	system	that	minimizes	prediction	error	over	time	will	
approximate	Bayesian	inference,	that	is,	such	a	system	will	be	inferential	in	the	
Bayesian	sense	that	it	increases	the	evidence	for	its	internal	model.	Using	the	
example	from	above	again,	by	minimizing	prediction	error	the	system	could	
accumulate	evidence	for	the	model	that	represents	the	sound	source	as	located	
at	80°.		In	that	case,	the	internal	model	is	revised	from	the	initial	90°	to	the	new	
estimate	of	80°.	
	
It	is	trivial	to	observe	that	the	perceiver	could	also	have	minimized	prediction	
error	by	turning	the	head	10°	to	the	left	and	thereby	have	accumulated	evidence	
for	the	prediction	that	the	sound	source	is	located	at	90°.	Prediction	error	can	be	
minimized	both	through	passive	updating	of	the	internal	model	and	through	
active	changes	to	the	sensory	input.	Action,	such	as	turning	one’s	head,	can	
therefore	minimize	prediction	error.	Since,	as	argued	earlier,	minimizing	
prediction	error	is	inference,	action	is	inference.	There	is	then	no	hindrance	to	
incorporating	action	into	an	inferentialist	framework.	
	
In	active	inference,	representations	are	central	to	guiding	action.	This	is	because	
action	only	occurs	when	a	hypothesis	–	in	this	case	a	representation	of	a	state	
that	is	yet	to	occur	–	has	accumulated	sufficient	evidence	relative	to	other	
hypotheses	to	become	the	target	of	prediction	error	minimization.	This	yields	
two	aspects	that	are	sometimes	seen	as	hallmarks	of	representations:	they	are	
action	guiding	and	they	are	somehow	detached	from	what	they	stand	for	(for	
discussion	and	review,	see	(Orlandi	2014)).	Active	inference	therefore	has	a	
good	claim	to	be	both	inferential	and	representational.		
	
For	perceptual	inference,	precisions	were	shown	to	be	critical.	Without	
precisions,	the	PEM	system	would	not	be	able	to	minimize	error	in	a	world	with	
state-dependent	uncertainty	and	interacting	causes.	The	same	holds	for	active	
inference.	Without	any	notion	of	how	levels	of	prediction	error	tend	to	shift	over	
many	interacting	time	scales,	the	system	would	pick	the	action	that	minimizes	
most	error	here	and	now	–	for	example	by	entering	and	remaining	in	a	dark	
room	(for	discussion,	see	(Friston,	Thornton	et	al.	2012)).	This	would	be	
analogous	to	overfitting,	and	would	come	at	the	cost	of	increasing	prediction	
error	over	the	longer	term.	For	example,	even	though	the	perceiver	might	
minimize	prediction	error	by	forcing	the	sound	to	come	at	the	90°	midline,	this	
might	make	it	difficult	to	ascertain	the	true	source	of	a	potentially	moving	cause	
such	as	the	trajectory	of	a	mosquito	buzzing	about	(since	direction	detection	is	
harder	over	the	midline	due	to	minimal	interaural	time	difference).	This	calls	for	
even	more	hierarchical	model	building,	namely	in	terms	of	the	precisions	
expected	in	the	evolution	of	the	prediction	error	landscape	as	a	result	of	the	
agent’s	active	intervention	in	the	world.	These	self-involving,	modeled	
regularities	are	however	not	fundamentally	different	to	the	regularities	involved	
in	perceptual	inference.	They	simply	concern	the	sensory	input	the	agent	should	
expect	to	result	from	the	interaction	of	one	particular	cause	in	the	world	–	the	
agent	itself	–	with	all	the	other	causes	of	sensory	input	(for	discussion	of	self-
models	see,	e.g.,	(Synofzik,	Vosgerau	et	al.	2008,	Metzinger	2009)).	
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There	is	thus	room	for	a	notion	of	action	within	PEM.	But	this	possibility	alone	
does	not	imply	that	a	PEM	system	is	likely	to	actually	be	an	agent.	If	the	system	is	
endowed	with	a	body	such	that	it	could	act,	then	the	imperative	for	minimization	
of	prediction	error	will	make	actual	action	highly	likely.	
	
If	the	system	has	accumulated	strong	evidence	for,	say,	an	association	between	
two	sounds,	it	may	still	be	unable	to	distinguish	several	hypotheses,	for	example	
whether	the	sounds	are	related	as	cause	and	effect	or	if	they	are	effects	of	some	
common	cause.	It	is	standard	in	the	causal	inference	literature	that	intervention	
is	required	to	acquire	evidence	for	or	against	these	hypotheses	(Pearl	2000,	
Woodward	2003).	For	example,	if	variation	in	one	sound	persists	even	if	the	
other	sound	is	actively	switched	off,	then	that	is	evidence	the	latter	sound	is	not	
the	cause	of	the	first.	The	necessity	of	action	is	generalized	in	the	observation	
from	earlier	that	the	system	needs	to	learn	differences	in	precisions	and	patterns	
of	interactions	amongst	causes,	such	as	occlusions	and	other	causal	relations	that	
change	the	sensory	input	in	nonlinear	ways.	Such	learning	thus	requires	action.	
The	prize	of	not	engaging	the	body	plant	to	intervene	in	the	environment	is	that	
prediction	error	will	tend	to	increase	since	predictions	will	be	unable	to	
distinguish	between	several	different	hypotheses.	A	PEM	system	that	can	act	will	
therefore	be	best	served	to	actually	act.	
	
This	simple	account	of	agency	has	profound	consequences.	It	will	be	a	learnable	
pattern	in	nature	that	inaction	will	tend	to	increase	prediction	error	in	the	longer	
term	(due	to	the	inaccuracy	of	the	hypotheses	the	system	can	accumulate	
evidence	for	by	using	only	passive	inference).	Conversely,	the	system	can	learn	
that	action	tends	to	allow	minimization	of	prediction	error	at	reasonable	time	
scales.	Overall,	this	teaches	the	system	that,	on	balance,	its	model	will	
accumulate	more	precise	evidence	through	action	than	through	inaction.	This	
will	bias	it	to	minimize	prediction	error	through	active	inference.	Of	course,	a	
system	that	only	ever	acts	on	the	basis	of	unchanging	models	will	never	be	able	
to	learn	new	patterns,	which	is	detrimental	in	a	changing	world.	Therefore	action	
must	be	interspersed	with	perceptual	inference	where	models	are	updated,	
before	new	action	takes	place.	
	
The	mechanism	by	which	this	switching	between	perception	and	action	takes	
place	is	best	conceived	in	terms	of	precision	optimization.	Recall	that	the	PEM	
system	will	build	up	expectations	for	precisions,	which	are	crucial	for	dealing	
with	state-dependent	noise	in	a	world	with	interacting	causes.	The	role	of	
expected	precisions	in	inference	is	to	optimally	adjust	weights	for	expected	
sensory	input:	input	that	is	expected	to	be	precise	is	favoured	in	Bayesian	
inference	whereas	input	that	is	expected	to	be	imprecise	is	not	favoured.	
Mechanistically,	this	calls	for	a	neuronal	gating	mechanism	that	inhibits	or	
excites	sensory	input	according	to	their	expected	precisions.	This	gating	
mechanism	serves	as	a	kind	of	probabilistic	search-light	and	thus	plays	the	
functional	role	of	attention	(Feldman	and	Friston	2010,	Brown,	Friston	et	al.	
2011,	Hohwy	2012,	Hohwy	2016).	
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As	the	system	gates	its	sensory	input	according	to	where	it	expects	the	most	
precise	sensory	input	will	occur,	across	several	time	scales,	it	may	switch	
between	perception	and	action.	For	example,	if	more	precision	is	expected	by	the	
agent	having	its	hand	at	the	position	of	the	coffee	cup	rather	than	at	the	current	
position	at	the	laptop,	then	it	will	begin	gating	the	current	sensory	input,	which	
suggests	the	hand	is	at	the	laptop.	This	in	turn	allows	the	coffee-hypothesis	to	
gain	relative	weight	over	the	laptop-hypothesis,	and	the	prediction	error	
generated	by	that	hypothesis	can	easily	by	minimized	by	moving	the	hand.	Since	
the	gain	is	high	on	this	prediction	error,	the	new	hypothesis	quickly	accumulates	
evidence	for	its	truth,	and	the	hand	will	find	itself	at	the	coffee	cup	(for	more	on	
the	dynamics	of	action	and	perception	in	relation	to	temporal	phenomenology,	
see	(Hohwy,	Paton	et	al.	2015),	for	the	formal	background,	see	(Friston,	Trujillo-
Barreto	et	al.	2008)).	
	
Embodied,	embedded,	and	inferential	and	representational.	
When	all	the	elements	described	in	the	last	section	are	combined,	a	wholly	
inferential	conception	of	agency	begins	to	take	shape.	If	action	and	agency	are	
moments	of	prediction	error	minimization,	then	desires	are	just	beliefs	(or	
priors)	about	states	that	happen	to	be	future,	with	a	focus	on	their	anticipated	
levels	of	prediction	error,	and	where	reward	is	the	absence	of	prediction	error.	
This	suggests	a	neat	continuity	with	perceptual	inference,	which	also	relies	on	
priors	and	the	imperative	to	minimize	prediction	error.	
	
The	idea	that	action	is	driven	by	prediction	error	minimization	relative	to	a	
model	does	raise	a	question	about	the	content	of	the	model	relative	to	which	
error	is	minimized.	This	model	is	what	defines	what	we	would	normally	describe	
as	the	agent’s	desires.	In	the	wider	PEM	framework,	which,	as	shall	be	described	
below,	relies	on	notions	of	free	energy	minimization,	the	expected	states	that	
anchor	active	inference	relate	to	set	points	in	terms	of	the	organism’s	
homeostasis.	This	immediately	evokes	an	evolutionary	perspective,	where	
expected	bodily	states	are	central	to	behavior.	Apart	from	the	specific	
evolutionary	aspects,	this	suggests	an	embodiment	perspective	because	all	
aspects	of	perception	and	cognition	then	have	a	foundation	in	bodily	states,	and	
movement	and	purposeful	behaviour	in	the	environment.	This	element	of	
embodiment	makes	it	more	likely	that	contact	can	be	made	between	
probabilistic	theories	of	perception	and	action	and	embodied	cognition	
approaches	(such	as,	e.g.,	(Varela,	Thompson	et	al.	1991,	Gallagher	2005,	
Thompson	2007);	for	recent	treatments	that	relate	to	PEM,	see	(Bruineberg	and	
Rietveld	2014,	Fazelpour	and	Thompson	2015)).	
	
However,	even	this	foundational	embodiment	is	conceived	probabilistically	in	
PEM.	A	set	of	expectations	for	bodily	states	(relating	to	homeostasis)	is	
essentially	a	model.	In	probabilistic	terms,	this	model	gives	the	probability	of	
finding	the	organism	in	some	subset	of	the	overall	set	of	states	it	could	be	in.		
The	model	is	specified	in	terms	of	internal	states,	as	signaled	in	interoception,	
but	is	tied	to	the	overall	setting	of	the	organism	in	a	subset	of	environmental	
states.	The	expected	states	defined	in	interoceptive	terms	would,	in	real	
organisms	traversing	actual	environments,	be	mirrored	in	the	expected	states	
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described	in	environmental	terms,	or	in	terms	of	their	sensory	input	or	
exteroception.	For	example,	fish	are	most	likely	find	their	sensory	organs	
impinged	upon	from	watery	states	and	this	is	associated	strongly	with	the	
homeostatic	needs	specified	in	their	model.	In	general,	within	this	probabilistic	
reading	of	the	foundational	embodiment	of	a	PEM	organism,	there	is	thus	a	tight	
coupling	between	the	interoceptive	and	exteroceptive	prediction	error	
landscapes	for	any	PEM	system.	
	
Not	only	does	PEM	provide	a	notion	of	embodiment,	it	also	speaks	to	elements	of	
embedded	or	situated	cognition	(see	(van	Gelder	1995,	Clark	1997,	Aydede	and	
Robbins	2009)).	With	the	tight	coupling	of	the	organism’s	expected	states	in	
terms	of	interoception	and	exteroception,	perception	and	cognition	cannot	be	
separated	from	bodily	nor	environmental	aspects	of	the	PEM	system.	
	
Crucially,	this	reading	of	embodiment	and	embedding	leads	directly	to	
inferential	processing	and	PEM.	The	model	specifies	the	probability	of	finding	
the	organism	in	any	one	of	all	the	possible	states.	To	know	this	model	directly	
would	require	the	agent	averaging	over	all	possible	states	and	ascertain	the	
occurrence	of	itself	in	them.	This	is	not	possible	for	a	finite	organism	to	learn	
directly.	Instead,	the	organism	must	essentially	guess	what	its	expected	states	
are	and	minimize	the	ensuing	error	through	perceptual	and	active	inference.	In	
slightly	more	formal	terms,	the	organism	needs	to	minimize	surprise,	that	is,	it	
needs	to	avoid	finding	itself	in	states	that	are	surprising	given	its	model.	The	sum	
of	prediction	error	is	always	equal	to	or	larger	than	the	surprise,	so	minimizing	
prediction	error	will	implicitly	minimize	surprise.	This	bound	on	surprise	is	also	
known	in	probabilistic	terms	as	the	free	energy,	and	so	this	challenging	idea	is	
enshrined	in	the	so-called	free	energy	principle	(Friston	2010).	
	
When	viewed	in	this	larger	context	of	the	free	energy	principle,	promising	
notions	of	embodied	and	embedded	cognition	present	themselves.	More	
research	is	needed	on	the	extent	to	which	they	capture	facets	of	the	wide-
ranging	and	heterogeneous	4e	body	of	research.	However,	for	the	conception	of	
embodiment	and	embedding	mooted	here,	an	inferential	conception	is	
inescapable.	
	
Hierarchical	inference	for	a	changing	world	
In	much	4e	research	there	is	a	focus	on	fluid	interactions	with	the	world,	
characterized	by	non-inferential,	non-representational,	“quick	and	dirty”	
processing.	This	picture	is	set	up	to	contrast	with	inferential,	representational,	
“slow	and	clean”	processing	(Clark	1997,	Clark	2013,	Clark	2015).	Often,	this	
kind	of	quick	and	dirty,	situated	cognition	is	discussed	in	terms	of	affordances:	
salient	elements	of	the	environment	that	are	in	some	sense	perceived	directly	
and	are	immediately	action	guiding.	Affordances	in	quick	and	dirty	processing	
are	thought	to	evade	the	computational	“bottleneck”	that	a	traditional	
representational	system	would	have	trying	to	passively	encode	the	entire	
sensory	input	presented	at	any	given	time.	For	some	types	of	action	and	at	some	
stages	of	learning,	performance	is	rather	plodding	and	sluggish,	but	there	is	an	
important	insight	in	how	the	notion	of	situated	cognition	highlights	the	fluid	
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swiftness	with	which	organisms	can	perform	some	complex	actions	in	their	
environment.		
	
In	a	PEM	system	there	is	no	bottleneck	problem	in	the	first	place,	however.	
There	is	never	an	issue	of	starting	from	scratch	and	encoding	an	entire	natural	
scene	in	order	to	be	able	to	perceive	it.	Hierarchical	Bayesian	inference	is	based	
on	prior	learning,	which	over	time	has	shaped	priors	at	many	levels.	Given	
priors,	the	sensory	input	is	no	longer	something	that	needs	to	be	encoded	here	
and	now.	Instead	the	sensory	input	is,	functionally	speaking,	the	feedback	to	the	
forwards	predictive	signal	generated	by	the	brain’s	internal	model	(Friston	
2005).	The	model	predicts	what	will	happen	and	gets	confirmation	or	
disconfirmation	on	these	predictions	from	the	sensory	input.	There	is	thus	no	
encoding	of	the	entire	sensory	input	in	each	perceptual	instance.	This	means	the	
PEM	system	has	no	need	to	resort	to	quick	and	dirty	processing	tricks	to	
overcome	a	computational	bottleneck.	Instead,	the	system	relies	on	slow	and	
clean	learning	in	order	to	facilitate	swift	and	fluid	perception	and	interaction	
with	the	world.	This	learning	is	‘slow’	because	is	relies	on	meticulous	
accumulation	of	evidence	for	hypotheses	at	multiple	time	scales.	It	is	‘clean’	
because	the	learning	slots	into	a	hierarchy	with	clearly	defined,	general	
functional	roles	for	time	scales,	for	predictions	of	values,	and	for	predictions	of	
precisions.	
	
The	difference	between	swift	and	fluid	processing	and	plodding	and	sluggish	
processing	can	easily	be	accommodated	within	a	PEM	system.	Affordances	are	
just	causes	of	sensory	input	that,	on	the	basis	of	prior	learning,	are	strongly	
expected	to	give	rise	to	high	precision	prediction	error.	To	maintain	Bayes	
optimality,	this	gates	sensory	input	accordingly,	and	strongly	focuses	both	
perceptual	and	active	inference	on	these	affordances.	In	this	setting,	prediction	
error	minimization	happens	quickly,	since	highly	precise	distributions	are	easier	
to	deal	with	computationally	than	imprecise	ones.	This	means	that	the	agent	in	
question	will	obtain	its	expected	states	swiftly	and	fluidly.	
	
Typically,	the	4e	preference	for	quick	and	dirty	processing	and	affordances	
comes	with	a	rejection	of	rich	representational	states	(Clark	2008,	Clark	2015).	
The	point	is	that	such	representations	cannot	come	about	due	to	the	bottleneck	
problem.	Moreover,	the	appeal	to	affordance-based	quick	and	dirty	processing	is	
thought	to	obviate	the	need	for	rich	internal	representations	altogether	as	the	
world’s	affordances	in	some	sense	is	its	own	representation	(Brooks	1991).	
	
On	the	PEM-based	account	of	swift	and	fluid	processing,	internal	representations	
are	however	necessary.	Over	time,	multi-layered	representations	are	
constructed	and	shaped,	and	Bayesian	model	selection	pick	the	model	with	the	
best	evidence	as	the	representation	of	the	world	relative	to	which	prediction	
error	is	minimized	in	active	inference	(this	kind	of	approach	is	developed	in	
more	detail	for	PEM	in	(Seth	2014,	Seth	2015)).	Again,	we	get	the	result	that	PEM	
has	the	resources	to	speak	to	typical	4e	discussions,	but	that	it	happens	on	the	
basis	of	representation	and	inference.	
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It	could	be	that	the	brain	builds	rich	representations	as	it	learns	about	the	world,	
and	then	gradually	substitutes	these	much	more	sparse	and	representation	poor,	
purpose-made	representations	that	more	directly	tie	in	with	and	engage	the	
environment.	One	argument	here	derives	from	Occam’s	razor,	in	the	sense	that	
there	are	simplicity	gains	from	opting	for	a	simple	over	a	complex,	rich	model	
(Clark	2015).	However,	simplicity	is	not	something	additional	to	inference.	
Complex	models	are	to	be	avoided	because	they	are	overfitted	and	thereby	incur	
a	prediction	error	cost	in	the	longer	run.	How	rich	or	simple	a	model	should	be	is	
thus	fully	given	by	PEM	in	the	first	place.		
	
In	fact,	there	is	reason	to	think	the	PEM	account	is	preferable	to	the	affordance-
based	account.	It	is	true	that	swift	and	fluid	processing	is	a	salient	and	
impressive	aspect	of	human	cognition.	But	so	is	the	flexible	way	we	shift	
between	contexts,	projects,	beliefs,	and	actions.	We	might	engage	in	attentive,	
fluid	and	swift	interaction	for	a	period	of	time	but	other	beliefs	and	concerns	
always	creep	in	and	make	it	imperative	to	shift	to	another	behavior.	On	the	
affordance-based	account	it	is	not	readily	explained	how	the	agent	might	
disengage	from	a	given	set	of	affordances;	the	focus	is	at	best	on	how	
representation	rich	learning	is	needed	before	swift	and	fluid	processing	is	
possible,	rather	than	the	role	of	rich	representation	during	swift	and	fluid	
processing.	The	agent	seems	tightly	knitted	to	its	environment,	and	it	is	not	clear	
how	the	agent	can	step	back	and	reconsider	its	current	course	of	action.	
	
In	contrast,	flexible	cognition	is	a	central	motivation	for	adopting	PEM’s	
hierarchical	Bayesian	inference	in	the	first	place.	Active	inference	is	driven	by	
the	most	probable	hypothesis	at	any	given	time.	The	system	will	have	built	up	
expectations	not	just	for	what	the	most	likely	causes	of	sensory	input	might	be	
but	also	for	the	typical	evolution	of	prediction	error	precision.	In	particular,	
there	will	be	accumulated	evidence	that	any	given	hypothesis	under	which	
prediction	error	is	minimized	at	a	certain	time	will	have	a	limited	life	span	–	in	
essence	the	system	will	know	that	it	lives	in	a	changing	world	where	precise	
evidence	for	any	given	hypothesis	will	soon	begin	to	be	hard	to	find.	For	
example,	as	the	agent	fluidly	and	swiftly	catches	baseballs	it	will	know	that	the	
sun	will	soon	set	and	make	the	visual	input	imprecise.	It	will	therefore	begin	
accumulating	evidence	for	the	next	hypothesis	(e.g.,	“I	am	eating	dinner”)	under	
which	evidence	will	soon	begin	to	be	accumulated	and	prediction	error	
minimized.	
	
This	speaks	to	a	crucial	balance,	which	a	PEM	system	must	obtain.	As	prediction	
error	is	minimized	in	active	inference,	the	hypothesis	relative	to	which	error	is	
minimized	is	held	stable.	This	means	that,	as	prediction	error	is	minimized,	the	
world	can	in	fact	change	“behind	the	scenes”	to	such	an	extent	that	it	would	
eventually	be	better	to	abandon	the	current	hypothesis	and	adopt	a	new	one.	
Anticipating	such	change	in	the	environment	matters	greatly	to	the	agent	
because	it	should	never	engage	in	any	behavior,	no	matter	how	swift	and	fluid,	
for	so	long	that	when	it	ceases	the	behavior,	the	world	has	changed	in	other	
respects	and	predictive	error	will	be	very	large.	A	PEM	agent	therefore	will	be	
inclined	to	believe	that	the	current	state	of	affairs	will	change,	and	therefore	the	
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agent	will	intersperse	active	inference	with	perceptual	inference,	where	the	
internal	model	is	checked	and	the	size	of	the	overall	prediction	error	is	adjusted	
and	tightened	up	before	a	new	hypothesis	is	selected	for	active	inference	(see	
(Hohwy	2013,	Hohwy,	Paton	et	al.	2015).	
	
A	hierarchical	system	operating	with	slow	and	clean	processing	can	thus	
economically	explain	both	swift	and	fluid,	affordance-based	cognition	as	well	as	
flexible	cognition.	This	is	an	important	point	to	make	in	the	context	of	PEM’s	
affinity	to	4e	cognition.	The	motivation	for	PEM	is,	in	the	end,	the	simple	
observation	that	we	live	in	a	changing	world.	Our	world	presents	many	different	
causes	of	our	sensory	input,	and	these	causes	interact	with	each	other	to	create	
non-linearities	in	the	input;	moreover,	these	interactions	happen	concurrently	at	
many	different	time	scales	(e.g.,	“The	setting	sun	makes	the	balls	hard	to	see	but	
this	time	of	the	year	the	janitor	often	turns	on	the	flood	lights	at	the	far	pitch…”).	
This	complexity	is	what	creates	the	need	for	hierarchical	Bayesian	inference	in	
the	first	place:	a	rich	internal	model	that	keeps	track	of	all	these	contingencies	
and	can	mix	the	various	causes	in	the	right	way	to	anticipate	the	sensory	input.	
This	has	a	4e-type	ring	to	it:	the	cognitive	system	is	the	way	it	is	because	the	
agent’s	world	and	body	is	the	way	it	is.	In	particular,	PEM	is	not	the	best	solution	
for	non-ecological,	lab-style	model	environments	where	typically	context	and	
interactions	between	hidden	causes	is	kept	to	a	minimum.	In	other	words,	a	
machine	learning	researcher	who	never	test	their	system	against	the	real	world	
will	have	little	impetus	to	build	a	PEM	system.	On	4e	approaches,	there	is	also	a	
strong	focus	on	real-world	settings	but	the	response	is	typically	to	tie	the	agent	
very	closely	to	its	environment.	This	however	makes	it	harder	to	see	how	not	
just	the	real	world,	but	also	that	fact	that	the	real	world	is	a	changing	place,	can	
be	taken	into	consideration.	PEM,	in	contrast,	makes	room	for	the	changing	
world	by	retracting	further	away	from	the	world,	into	a	vast	internal	model	that	
seeks	to	represent	the	full	richness	of	the	world	and	the	way	it	changes	over	
many	time	scales.	On	the	PEM	conception	of	the	agent’s	place	in	the	world,	
cognition	is	not	a	matter	of	being	closely	in	tune	with	and	driven	by	the	sensory	
input.	Rather,	cognition	is	a	matter	of	having	richly	represented	expectations	for	
the	world	and	the	body	and	seeking	confirming	feedback	on	those	expectations	
through	the	senses.	
	
The	mind	and	things	without	it	
Both	perception	and	action	are	inferential	and	representational.	The	PEM	
system’s	process	of	minimizing	prediction	error	implies	that	the	sensory	input	is	
explained	away	on	the	basis	of	the	evolving	hypotheses	of	an	internal	model.	The	
more	the	system	can	minimize	its	prediction	error,	the	more	it	will	accumulate	
evidence	for	its	own	truth.	This	is	a	trivial	observation:	if	I	can	minimize	
prediction	error	for	my	theory	that	my	hamster	has	escaped	the	more	evidence	I	
have	for	that	theory.	If	we	consider	the	PEM	system	an	agent,	then	it	acquires	
evidence	for	its	own	existence	through	its	activities	(Friston	2010).	Borrowing	a	
term	from	philosophy	of	science,	the	PEM	system	can	thus	be	said	to	be	self-
evidencing	(Hempel	1965,	Hohwy	2014).	
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A	self-evidencing	system	creates	a	sensory	boundary	between	itself	(i.e.,	the	
model)	and	the	causes	of	its	sensory	input.	This	again	is	a	trivial	consequence	of	
self-evidencing:	there	is	something	that	garners	evidence	and	then	there	is	what	
the	evidence	is	evidence	of.	Or	again,	in	both	perceptual	and	active	inference	
there	is	something	doing	the	inference	and	something	being	inferred.	This	
boundary	can	also	be	described	in	terms	of	causal	nets,	where	a	set	of	inner	
states	(i.e.,	brain	states)	can	be	said	to	have	a	Markov	blanket	(Pearl	1988)	
consisting	of	the	inner	states’	parents	(i.e.,	the	sensory	states),	and	their	children	
and	other	parents	of	the	children	(i.e.,	the	active	states	driving	active	inference)	
((Friston	2013,	Hohwy	2015);	causal	Bayes	nets	must	be	acyclic	but	brains	have	
recurrent	(cyclic)	states;	there	are	technical	ways,	such	as	dynamical	Bayes	nets	
deal	with	such	problems).	The	activity	of	the	states	within	a	Markov	blanket	is	
wholly	determined	the	states	of	the	blanket.	In	principle,	nothing	about	the	
environmental	states	beyond	the	blanket	need	be	known	to	know	what	the	
system	is	doing.	By	extension,	in	principle,	only	the	states	of	the	sensory	organs	
need	be	known	to	know	everything	the	mind	does.	
	
PEM	then	comes	with	a	principled	way	of	drawing	a	boundary	between	the	mind	
and	the	outside	world.	If	a	particular	state	is	part	of	what	is	doing	the	inference,	
then	it	must	be	within	the	sensory	boundary,	as	a	part	of	what	approximates	
inference	about	outside	causes	of	sensory	input.	This	may	relate	to	the	vigorous	
debate	about	extended	cognition	(Clark	and	Chalmers	1998,	Clark	2008),	which	is	
the	last	member	of	4e	cognition	to	discuss.	
	
Extended	cognition	is	the	idea	that	some	objects,	such	as	notebooks	and	smart	
phones,	play	such	an	integrated,	memory-like	function	in	the	mental	economy	of	
some	agents	that,	by	parity	of	reasoning,	they	should	be	considered	part	of	the	
agent’s	mental	states	even	though	they	reside	outside	the	central	nervous	
system.	There	is	much	discussion	of	this	idea	(see,	e.g.,	(Menary	2007,	Adams	
and	Aizawa	2008,	Anderson,	Richardson	et	al.	2012,	Spaulding	2012)).	PEM	
brings	with	it	a	new	way	of	thinking	about	the	role	of	such	external	objects.	On	
the	one	hand,	these	objects	are	inferred	(e.g.,	on	the	basis	of	the	sensory	input	
from	the	notebook)	and	as	such	they	are	outside	the	mental	states	of	the	system.	
On	the	other	hand,	if	the	extended	cognition	hypothesis	is	correct,	they	are	
within	the	sensory	boundary,	forming	part	of	the	inner	states	behind	a	Markov	
blanket	inferring	the	hidden	causes	beyond	it.	
	
Interpreting	purported	cases	of	extended	cognition	according	to	PEM	thus	leaves	
two	main	options.	There	might	be	contradiction,	since	something	cannot	be	both	
within	and	beyond	the	same	boundary	at	the	same	time.	Or,	there	might	be	
multiple	co-existing	sensory	boundaries.	The	second	option	is	very	interesting	
and	very	likely	to	be	true,	since	Markov	blankets	occur	easily.	There	is	an	
associated	cost	however:	we	have	identified	the	inner	states	(or	the	model)	with	
the	agent,	and	if	there	are	multiple	Markov	blankets	then	there	are	multiple	
agents	co-existing	at	the	same	time.	Though	this	may	be	true	in	a	weak	sense	of	
agent,	it	is	explanatorily	messy.	When	asking	which	agent	is	acting,	there	would	
then	be	a	multitude	of	correct	answers,	depending	on	how	many	nested	Markov	
blankets	are	involved	in	the	same	action.	This	speaks	in	favour	of	using	inference	
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to	the	best	explanation	to	identify	the	agent	whose	relatively	invariant	
involvement	accounts	for	most	of	observed	behavior	over	time.	It	seems	likely	
this	more	pragmatically	identified	agent	would	be	the	agent	as	specified	by	the	
model	harboured	just	in	the	nervous	system.	This	is	the	agent	relative	to	which	
prediction	error	is	minimized	over	the	longer	time	scale,	which	as	we	saw	is	
central	to	understanding	predictive	processing	accounts	in	the	first	place	(for	
discussion,	see	(Hohwy	2014)).	Bringing	this	discussion	back	to	extended	
cognition,	the	pragmatic	method	of	identifying	the	agent	suggests	that	there	is	no	
extended	cognition,	since	the	special	objects	in	question	are	beyond	the	one	
Markov	blanket.	The	more	lax	way	of	identifying	agents	suggests	that	extended	
cognition	ambiguous,	since	the	special	objects	are	beyond	some	blankets	and	
within	others.	
	
The	existence	of	the	sensory	boundary	or	Markov	blanket	implies	that	
perception	and	agency	are	confined	to	the	inner	states	of	the	PEM	system	
(wherever	the	boundary	or	boundaries	of	the	system	is	located).	Those	inner	
states	will	mirror	the	states	outside	the	boundary:	the	inner	states	will,	through	
prediction	error	minimization,	come	to	represent	the	worldly	causes	of	the	
sensory	input	impinging	at	the	system’s	periphery.	Conversely,	through	active	
inference,	the	outside	states	will	come	to	conform	to	the	expectations	harboured	
in	the	internal	states.	
	
There	is	then	an	intriguing	duality	to	this	sensory	boundary	between	mind	and	
world.	On	the	one	hand,	the	boundary	is	epistemic	(cf.	self-evidencing):	the	
worldly	causes	can	only	be	known	vicariously,	through	inference	on	sensory	
input.	On	the	other	hand,	the	boundary	is	characterized	in	causal	terms	(cf.	
Markov	blanket):	there	is	a	dynamic	coupling	between	mind	and	world,	enabled	
through	both	perception	and	action.	
	
This	duality	summarises	well	why	PEM	is	a	good	fit	for	many	of	the	issues	in	4e	
debates:	PEM	is	able	to	throw	light	on	embodied	agents	dynamically	interacting	
with	the	environment	in	which	they	are	embedded.	This	good	fit	with	4e	
cognition	is	however	made	possible	precisely	because	PEM	is	inferential	and	
representational.	
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